Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.480
Filter
1.
J Neurosurg ; 140(4): 1129-1136, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38564812

ABSTRACT

OBJECTIVE: Stereoelectroencephalography (SEEG)-guided radiofrequency thermocoagulation (RFTC) has the advantage of producing a lesion in the epileptogenic zone (EZ) at the end of SEEG. The majority of published SEEG-guided RFTCs have been bipolar and usually performed between contiguous contacts of the same electrode. In the present study, the authors evaluate the safety, efficacy, and benefits of monopolar RFTC at the end of SEEG. METHODS: This study included a series of 31 consecutive patients who had undergone RFTC at the end of SEEG for drug-resistant focal epilepsy in the period of January 2013-December 2019. Post-RFTC seizure control was assessed after 2 months and at the last follow-up visit. Twenty-one patients underwent resective epilepsy surgery after the SEEG-guided RFTC, and the postoperative seizure outcome among these patients was compared with the post-RFTC seizure outcome. RESULTS: Four hundred forty-six monopolar RFTCs were done in the 31 patients. Monopolar RFTCs were performed in all cortical areas, including the insular cortex in 11 patients (56 insular RFTCs). There were 31 noncontiguous lesions (7.0%) because of vascular constraints. The volume of one monopolar RFTC, as measured on T2-weighted MRI immediately after the procedure, was between 44 and 56 mm3 (mean 50 mm3). The 2-month post-RFTC seizure outcomes were as follows: seizure freedom in 13 patients (41.9%), ≥ 50% reduced seizure frequency in 11 (35.5%), and no significant change in 7 (22.6%). Seizure outcome at the last follow-up visit (mean 18 months, range 2-54 months) showed seizure freedom in 2 patients (6.5%) and ≥ 50% reduced seizure frequency in 20 patients (64.5%). Seizure freedom after monopolar RFTC was not significantly associated with the number or location of coagulated contacts. Seizure response after monopolar RFTC had a high positive predictive value (93.8%) but a low negative predictive value (40%) for seizure outcome after subsequent resective surgery. In this series, the only complication (3.2%) was a limited intraventricular hematoma following RFTC performed in the hippocampal head, with spontaneous resolution and no sequelae. CONCLUSIONS: The use of monopolar SEEG-guided RFTC provides more freedom in terms of choosing the SEEG contacts for thermocoagulation and a larger thermolesion volume. Monopolar thermocoagulation seems particularly beneficial in cases with an insular EZ, in which vascular constraints could be partially avoided by making noncontiguous lesions within the EZ.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Humans , Treatment Outcome , Electroencephalography/methods , Epilepsy/surgery , Seizures/etiology , Stereotaxic Techniques/adverse effects , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Electrocoagulation/methods , Magnetic Resonance Imaging/adverse effects , Retrospective Studies
2.
Childs Nerv Syst ; 40(5): 1331-1337, 2024 May.
Article in English | MEDLINE | ID: mdl-38451299

ABSTRACT

PURPOSE: Stereoelectroencephalography (SEEG) is a diagnostic surgery that implants electrodes to identify areas of epileptic onset in patients with drug-resistant epilepsy (DRE). SEEG is effective in identifying the epileptic zone; however, placement of electrodes in very young children has been considered contraindicated due to skull thinness. The goal of this study was to evaluate if SEEG is safe and accurate in young children with thin skulls. METHODS: Four children under the age of two years old with DRE underwent SEEG to locate the region of seizure onset. Presurgical planning and placement of electrodes were performed using ROSA One Brain. Preoperative electrode plans were merged with postoperative CT scans to determine accuracy. Euclidean distance between the planned and actual trajectories was calculated using a 3D coordinate system at both the entry and target points for each electrode. RESULTS: Sixty-three electrodes were placed among four patients. Mean skull thickness at electrode entry sites was 2.34 mm. The mean difference between the planned and actual entry points was 1.12 mm, and the mean difference between the planned and actual target points was 1.73 mm. No significant correlation was observed between planned and actual target points and skull thickness (Pearson R = - 0.170). No perioperative or postoperative complications were observed. CONCLUSIONS: This study demonstrates that SEEG can be safe and accurate in children under two years of age despite thin skulls. SEEG should be considered for young children with DRE, and age and skull thickness are not definite contraindications to the surgery.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Child , Humans , Infant , Child, Preschool , Feasibility Studies , Electroencephalography , Electrodes, Implanted , Stereotaxic Techniques , Drug Resistant Epilepsy/surgery , Epilepsy/surgery , Retrospective Studies
3.
Epilepsy Behav ; 153: 109716, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508103

ABSTRACT

OBJECTIVE: This study investigates the prevalence of pathogenic variants in the mechanistic target of rapamycin (mTOR) pathway in surgical specimens of malformations of cortical development (MCDs) and cases with negative histology. The study also aims to evaluate the predictive value of genotype-histotype findings on the surgical outcome. METHODS: The study included patients with drug-resistant focal epilepsy who underwent epilepsy surgery. Cases were selected based on histopathological diagnosis, focusing on MCDs and negative findings. We included brain tissues both as formalin-fixed, paraffin-embedded (FFPE) or fresh frozen (FF) samples. Single-molecule molecular inversion probes (smMIPs) analysis was conducted, targeting the MTOR gene in FFPE samples and 10 genes within the mTOR pathway in FF samples. Correlations between genotype-histotype and surgical outcome were examined. RESULTS: We included 78 patients for whom we obtained 28 FFPE samples and 50 FF tissues. Seventeen pathogenic variants (22 %) were identified and validated, with 13 being somatic within the MTOR gene and 4 germlines (2 DEPDC5, 1 TSC1, 1 TSC2). Pathogenic variants in mTOR pathway genes were exclusively found in FCDII and TSC cases, with a significant association between FCD type IIb and MTOR genotype (P = 0.003). Patients carrying mutations had a slightly better surgical outcome than the overall cohort, however it results not significant. The FCDII diagnosed cases more frequently had normal neuropsychological test, a higher incidence of auras, fewer multiple seizure types, lower occurrence of seizures with awareness impairment, less ictal automatisms, fewer Stereo-EEG investigations, and a longer period long-life of seizure freedom before surgery. SIGNIFICANCE: This study confirms that somatic MTOR variants represent the primary genetic alteration detected in brain specimens from FCDII/TSC cases, while germline DEPDC5, TSC1/TSC2 variants are relatively rare. Systematic screening for these mutations in surgically treated patients' brain specimens can aid histopathological diagnoses and serve as a biomarker for positive surgical outcomes. Certain clinical features associated with pathogenic variants in mTOR pathway genes may suggest a genetic etiology in FCDII patients.


Subject(s)
Drug Resistant Epilepsy , Epilepsies, Partial , Epilepsy , Malformations of Cortical Development, Group I , Malformations of Cortical Development , Adult , Humans , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/surgery , TOR Serine-Threonine Kinases , Epilepsies, Partial/genetics , Epilepsies, Partial/diagnosis , Seizures , Germ Cells/pathology , Malformations of Cortical Development/pathology
4.
Acta Neurochir (Wien) ; 166(1): 145, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38514531

ABSTRACT

PURPOSE: This study is to report some preliminary surgical considerations and outcomes after the first implantations of a new and commercially available implantable epicranial stimulation device for focal epilepsy. METHODS: We retrospectively analyzed data from clinical notes. Outcome parameters were as follows: wound healing, surgery time, and adverse events. RESULTS: Five patients were included (17-52 y/o; 3 female). Epicranial systems were uneventfully implanted under neuronavigation guidance. Some minor adverse events occurred. Wound healing in primary intention was seen in all patients. Out of these surgeries, certain concepts were developed: Skin incisions had to be significantly larger than expected. S-shaped incisions appeared to be a good choice in typical locations behind the hairline. Preoperative discussions between neurologist and neurosurgeon are mandatory in order to allow for the optimal coverage of the epileptogenic zone with the electrode geometry. CONCLUSION: In this first small series, we were able to show safe implantation of this new epicranial stimulation device. The use of neuronavigation is strongly recommended. The procedure is simple but not trivial and ideally belongs in the hands of a neurosurgeon.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Humans , Female , Epilepsy/surgery , Retrospective Studies , Drug Resistant Epilepsy/surgery , Cerebral Cortex , Electrodes, Implanted , Treatment Outcome
5.
Sci Rep ; 14(1): 6198, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38486013

ABSTRACT

Accurately identification of the seizure onset zone (SOZ) is pivotal for successful surgery in patients with medically refractory epilepsy. The purpose of this study is to improve the performance of model predicting the epilepsy surgery outcomes using genetic neural network (GNN) model based on a hybrid intracranial electroencephalography (iEEG) marker. We extracted 21 SOZ related markers based on iEEG data from 79 epilepsy patients. The least absolute shrinkage and selection operator (LASSO) regression was employed to integrated seven markers, selected after testing in pairs with all 21 biomarkers and 7 machine learning models, into a hybrid marker. Based on the hybrid marker, we devised a GNN model and compared its predictive performance for surgical outcomes with six other mainstream machine-learning models. Compared to the mainstream models, underpinning the GNN with the hybrid iEEG marker resulted in a better prediction of surgical outcomes, showing a significant increase of the prediction accuracy from approximately 87% to 94.3% (P = 0.0412). This study suggests that the hybrid iEEG marker can improve the performance of model predicting the epilepsy surgical outcomes, and validates the effectiveness of the GNN in characterizing and analyzing complex relationships between clinical data variables.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Humans , Electrocorticography/methods , Epilepsy/genetics , Epilepsy/surgery , Drug Resistant Epilepsy/surgery , Machine Learning , Treatment Outcome , Electroencephalography/methods
6.
Epilepsy Behav ; 153: 109707, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430673

ABSTRACT

This study explored illness experiences and decision-making among patients with epilepsy who underwent two different types of surgical interventions: resection versus implantation of the NeuroPace Responsive Neurostimulation System (RNS). We recruited 31 participants from a level four epilepsy center in an academic medical institution. We observed 22 patient clinic visits (resection: n = 10, RNS: n = 12) and conducted 18 in-depth patient interviews (resection: n = seven, RNS: n = 11); most visits and interviews included patient caregivers. Using an applied ethnographic approach, we identified three major themes in the experiences of resection versus RNS patients. First, for patients in both cohorts, the therapeutic journey was circuitous in ways that defied standardized first-, second-, and third- line of care models. Second, in conceptualizing risk, resection patients emphasized the permanent loss of "taking out" brain tissue whereas RNS patients highlighted the reversibility of "putting in" a device. Lastly, in considering benefit, resection patients perceived their surgery as potentially curative while RNS patients understood implantation as primarily palliative with possible additional diagnostic benefit from chronic electrocorticography. Insight into the perspectives of patients and caregivers may help identify key topics for counseling and exploration by clinicians.


Subject(s)
Deep Brain Stimulation , Drug Resistant Epilepsy , Epilepsy , Humans , Drug Resistant Epilepsy/surgery , Epilepsy/surgery , Electrocorticography , Patient Outcome Assessment
7.
Curr Opin Neurol ; 37(2): 141-151, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38334495

ABSTRACT

PURPOSE OF REVIEW: To review the current practices and evidence for the diagnostic accuracy and the benefits of presurgical evaluation. RECENT FINDINGS: Preoperative evaluation of patients with drug-resistant focal epilepsies and subsequent epilepsy surgery leads to a significant proportion of seizure-free patients. Even those who are not completely seizure free postoperatively often experience improved quality of life with better social integration. Systematic reviews and meta-analysis on the diagnostic accuracy are available for Video-electroencephalographic (EEG) monitoring, magnetic resonance imaging (MRI), electric and magnetic source imaging, and functional MRI for lateralization of language and memory. There are currently no evidence-based international guidelines for presurgical evaluation and epilepsy surgery. SUMMARY: Presurgical evaluation is a complex multidisciplinary and multiprofessional clinical pathway. We rely on limited consensus-based recommendations regarding the required staffing or methodological expertise in epilepsy centers.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Humans , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Quality of Life , Electroencephalography/methods , Epilepsy/diagnostic imaging , Epilepsy/surgery , Magnetic Resonance Imaging/methods , Treatment Outcome
8.
Article in Russian | MEDLINE | ID: mdl-38334728

ABSTRACT

Robot-assisted implantation of deep electrodes for stereo-EEG monitoring has become popular in recent years in patients with drug-resistant epilepsy. However, there are still few data on safety of this technique. OBJECTIVE: To assess the incidence of complications in patients with drug-resistant epilepsy undergoing robot-assisted implantation of stereo-EEG electrodes. MATERIAL AND METHODS: We retrospectively studied the results of implantation of stereo-EEG electrodes in 187 patients with drug-resistant epilepsy. All patients underwent non-invasive preoperative examination (video-EEG, MRI, PET, SPECT, MEG). In case of insufficient data, stereo-EEG monitoring was prescribed. We determined electrode insertion trajectory using a robotic station and MR images. Implantation of electrodes was carried out using a Rosa robot (Medtech, France). All patients underwent invasive EEG monitoring after implantation. RESULTS: There were 11.25±3 electrodes per a patient. Implantation of one electrode took 7.5±4.9 min. Postoperative MRI revealed electrode malposition in 2.3% of cases. None was associated with complications. The complication rate per electrode was 0.6%. Complications affected stereo-EEG monitoring only in 3 cases (1.6%). The mortality rate was 0.5%. Bilateral implantation (p=0.005), insular (p=0.040) and occipital (p=0.045) deep electrode implantation were associated with lower incidence of complications. Longer duration of the procedure influenced the incidence of electrode placement in the lateral ventricle (p=0.028), and implantation in the frontal lobe was more often associated with epidural placement of electrodes (p=0.039). CONCLUSION: Robot-assisted implantation of stereo-EEG electrodes is a safe procedure with minimal risk of complications. Rare electrode malposition does not usually affect invasive monitoring.


Subject(s)
Drug Resistant Epilepsy , Robotics , Humans , Stereotaxic Techniques , Retrospective Studies , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Electroencephalography/adverse effects , Electroencephalography/methods , Electrodes, Implanted/adverse effects
9.
Article in Russian | MEDLINE | ID: mdl-38334729

ABSTRACT

BACKGROUND: In recent years, temporal lobe encephalocele has become more common in patients with focal drug-resistant epilepsy. Despite available experience, there are still no clear recommendations for choosing the extent of surgery in these patients. OBJECTIVE: To evaluate the effectiveness of diagnosis and surgical treatment of focal drug-resistant epilepsy associated with temporal lobe encephalocele. MATERIAL AND METHODS: The study included 21 patients with focal temporal lobe epilepsy and temporal lobe encephalocele. All patients underwent continuous video-EEG monitoring and MRI of the brain. There were 12 (57.4%) selective encephalocele resections and 9 (42.6%) anterior temporal lobectomies. The median follow-up period was 31 months. RESULTS: The overall effectiveness of surgical treatment with postoperative Engel class I was 76% (16 cases). Selective encephalocele resection was followed by postoperative Engel class I in 10 patients (83%). There were 6 (67%) patients with similar outcomes after temporal lobectomy. Mean volume of resected tissue adjacent to encephalocele was 8.3 cm3. CONCLUSION: Surgery is a highly effective treatment for patients with epileptic seizures following temporal lobe encephalocele. In our sample, favorable postoperative outcomes were achieved in 76% of patients (Engel class I). There were no significant differences in effectiveness between selective resection and temporal lobectomy. Further research is necessary for a clear protocol of surgical treatment of focal drug-resistant epilepsy associated with encephalocele.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , Epilepsy , Humans , Encephalocele/complications , Encephalocele/diagnostic imaging , Encephalocele/surgery , Temporal Lobe/diagnostic imaging , Temporal Lobe/surgery , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/surgery , Epilepsy, Temporal Lobe/complications , Seizures , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Treatment Outcome , Epilepsy/complications , Electroencephalography , Retrospective Studies
10.
Epilepsia Open ; 9(2): 800-807, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38366963

ABSTRACT

Genetic variants in relevant genes coexisting with MRI lesions in children with drug-resistant epilepsy (DRE) can negatively influence epilepsy surgery outcomes. Still, presurgical evaluation does not include genetic diagnostics routinely. Here, we report our presurgical evaluation algorithm that includes routine genetic testing. We analyzed retrospectively the data of 68 children with DRE operated at a mean age of 7.8 years (IQR: 8.1 years) at our center. In 49 children, genetic test results were available. We identified 21 gene variants (ACMG III: n = 7, ACMG IV: n = 2, ACMG V: n = 12) in 19 patients (45.2%) in the genes TSC1, TSC2, MECP2, DEPDC5, HUWE1, GRIN1, ASH1I, TRIO, KIF5C, CDON, ANKD11, TGFBR2, ATN1, COL4A1, JAK2, KCNQ2, ATP1A2, and GLI3 by whole-exome sequencing as well as deletions and duplications by array CGH in six patients. While the results did not change the surgery indication, they supported counseling with respect to postoperative chance of seizure freedom and weaning of antiseizure medication (ASM). The presence of genetic findings leads to the postoperative retention of at least one ASM. In our cohort, the International League against Epilepsy (ILAE) seizure outcome did not differ between patients with and without abnormal genetic findings. However, in the 7/68 patients with an unsatisfactory ILAE seizure outcome IV or V 12 months postsurgery, 2 had an abnormal or suspicious genetic finding as a putative explanation for persisting seizures postsurgery, and 3 had received palliative surgery including one TSC patient. This study highlights the importance of genetic testing in children with DRE to address putative underlying germline variants as genetic epilepsy causes or predisposing factors that guide patient and/or parent counseling on a case-by-case with respect to their individual chance of postoperative seizure freedom and ASM weaning. PLAIN LANGUAGE SUMMARY: Genetic variants in children with drug-resistant epilepsy (DRE) can negatively influence epilepsy surgery outcomes. However, presurgical evaluation does not include genetic diagnostics routinely. This retrospective study analyzed the genetic testing results of the 68 pediatric patients who received epilepsy surgery in our center. We identified 21 gene variants by whole-exome sequencing as well as deletions and duplications by array CGH in 6 patients. These results highlight the importance of genetic testing in children with DRE to guide patient and/or parent counseling on a case-by-case with respect to their individual chance of postoperative seizure freedom and ASM weaning.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Humans , Child , Retrospective Studies , Treatment Outcome , Epilepsy/diagnosis , Epilepsy/genetics , Epilepsy/surgery , Seizures/drug therapy , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/surgery , Genetic Testing , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/therapeutic use , Ubiquitin-Protein Ligases/therapeutic use , Kinesins
11.
Epilepsy Behav ; 153: 109694, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401416

ABSTRACT

OBJECTIVE: Negative MRI and an epileptogenic zone (EZ) adjacent to eloquent areas are two main issues that can be encountered during pre-surgical evaluation for epilepsy surgery. Focal Cortical Dysplasia type II (FCD type II) is the most common aetiology underlying a negative MRI. The objective of this study is to present three cases of pediatric patients exhibiting negative MRI and a seizure onset zone close to eloquent areas, who previously underwent traditional open surgery or SEEG-guided radiofrequency thermocoagulations (RF-TC). After seizure seizure recrudescence, pre-surgical SEEG was re-evaluated and Magnetic Resonance-guided laser interstitial thermal therapy (MRg-LiTT) was performed. We discuss the SEEG patterns, the planning of laser probes trajectories and the outcomes one year after the procedure. METHODS: Pediatric patients who underwent SEEG followed by MRg-LiTT for drug-resistant epilepsy associated with FCD type II at our Centre were included. Pre-surgical videoEEG (vEEG), stereoEEG (sEEG), and MRI were reviewed. Post-procedure clinical outcome (measured by Engel score) and complications rates were evaluated. RESULTS: Three patients underwent 3 MRg-LiTT procedures from January 2022 to June 2022. Epileptogenic zone was previously studied via SEEG in all the patients. All the three patients pre-surgical MRI was deemed negative. Mean age at seizure onset was 47 months (21-96 months), mean age at MRg-LiTT was 12 years (10 years 10 months - 12 years 9 months). Engel class Ia outcome was achieved in patients #2 and #3, Engel class Ib in patient #1. Mean follow-up length was of 17 months (13 months - 20 months). Complications occurred in one patient (patient #2, extradural hematoma). CONCLUSIONS: The combined use of SEEG and MRg-LiTT in complex cases can lead to good outcomes both as a rescue therapy after failed surgery, but also as an alternative to open surgery after a successful SEEG-guided Radiofrequency Thermocoagulation (RF-TC). Specific SEEG patterns and a previous good outcome from RF-TC can be predictors of a favourable outcome.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Malformations of Cortical Development, Group I , Humans , Child , Child, Preschool , Stereotaxic Techniques , Electroencephalography/methods , Treatment Outcome , Epilepsy/surgery , Magnetic Resonance Imaging/methods , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Seizures/diagnostic imaging , Seizures/etiology , Seizures/surgery , Magnetic Resonance Spectroscopy , Retrospective Studies
12.
Epilepsia ; 65(4): 944-960, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38318986

ABSTRACT

OBJECTIVE: To deconstruct the epileptogenic networks of patients with drug-resistant epilepsy (DRE) using source functional connectivity (FC) analysis; unveil the FC biomarkers of the epileptogenic zone (EZ); and develop machine learning (ML) models to estimate the EZ using brief interictal electroencephalography (EEG) data. METHODS: We analyzed scalp EEG from 50 patients with DRE who had surgery. We reconstructed the activity (electrical source imaging [ESI]) of virtual sensors (VSs) across the whole cortex and computed FC separately for epileptiform and non-epileptiform EEG epochs (with or without spikes). In patients with good outcome (Engel 1a), four cortical regions were defined: EZ (resection) and three non-epileptogenic zones (NEZs) in the same and opposite hemispheres. Region-specific FC features in six frequency bands and three spatial ranges (long, short, inner) were compared between regions (Wilcoxon sign-rank). We developed ML classifiers to identify the VSs in the EZ using VS-specific FC features. Cross-validation was performed using good outcome data. Performance was compared with poor outcomes and interictal spike localization. RESULTS: FC differed between EZ and NEZs (p < .05) during non-epileptiform and epileptiform epochs, showing higher FC in the EZ than its homotopic contralateral NEZ. During epileptiform epochs, the NEZ in the epileptogenic hemisphere showed higher FC than its contralateral NEZ. In good outcome patients, the ML classifiers reached 75% accuracy to the resection (91% sensitivity; 74% specificity; distance from EZ: 38 mm) using epileptiform epochs (gamma and beta frequency bands) and 62% accuracy using broadband non-epileptiform epochs, both outperforming spike localization (accuracy = 47%; p < .05; distance from EZ: 57 mm). Lower performance was seen in poor outcomes. SIGNIFICANCE: We present an FC approach to extract EZ biomarkers from brief EEG data. Increased FC in various frequencies characterized the EZ during epileptiform and non-epileptiform epochs. FC-based ML models identified the resection better in good than poor outcome patients, demonstrating their potential for presurgical use in pediatric DRE.


Subject(s)
Drug Resistant Epilepsy , Electroencephalography , Humans , Child , Electroencephalography/methods , Drug Resistant Epilepsy/surgery , Magnetic Resonance Imaging , Biomarkers
13.
Epilepsia ; 65(4): e47-e54, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38345420

ABSTRACT

Nodular heterotopia (NH)-related drug-resistant epilepsy is challenging due to the deep location of the NH and the complexity of the underlying epileptogenic network. Using ictal stereo-electroencephalography (SEEG) and functional connectivity (FC) analyses in 14 patients with NH-related drug-resistant epilepsy, we aimed to determine the leading structure during seizures. For this purpose, we compared node IN and OUT strength between bipolar channels inside the heterotopia and inside gray matter, at the group level and at the individual level. At seizure onset, the channels within NH belonging to the epileptogenic and/or propagation network showed higher node OUT-strength than the channels within the gray matter (p = .03), with higher node OUT-strength than node IN-strength (p = .03). These results are in favor of a "leading" role of NH during seizure onset when involved in the epileptogenic- or propagation-zone network (50% of patients). However, when looking at the individual level, no significant difference between NH and gray matter was found, except for one patient (in two of three seizures). This result confirms the heterogeneity and the complexity of the epileptogenic network organization in NH and the need for SEEG exploration to characterize more precisely patient-specific epileptogenic network organization.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Periventricular Nodular Heterotopia , Humans , Periventricular Nodular Heterotopia/complications , Periventricular Nodular Heterotopia/diagnostic imaging , Epilepsy/diagnostic imaging , Seizures , Electroencephalography/methods , Cerebral Cortex , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery
14.
World Neurosurg ; 184: e408-e416, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38309654

ABSTRACT

OBJECTIVE: To analyze the relationship between trajectory-skull angle and stereoelectroencephalography electrode implantation accuracy in drug-resistant epilepsy patients, aiming to guide clinical electrode placement and enhance surgical precision and safety. METHODS: We conducted a retrospective analysis of medical records and surgical characteristics of 32 consecutive patients diagnosed with drug-resistant epilepsy, who underwent stereoelectroencephalography procedures at our center from June 2020 to June 2023. To evaluate the accuracy of electrode implantation, we utilized preoperative and postoperative computed tomography scans fused with SinoPlan software-planned trajectories. Entry radial error and target vector error were assessed as measurements of electrode implantation accuracy. RESULTS: After adjusting for confounders, we found a significant positive correlation between trajectory-skull angle and entry radial error (ß = 0.02, 95% CI: 0.01-0.03, P < 0.001). Likewise, a significant positive correlation existed between trajectory-skull angle and target vector error in all three models (ß = 0.03, 95% CI: 0.01-0.04, P < 0.001). Additionally, a U-shaped relationship between trajectory-skull angle and target vector error was identified using smooth curve fitting. This U-shaped pattern persisted in both frame-based and robot-guided stereotactic techniques. According to the two-piecewise linear regression model, the inflection points were 9° in the frame-based group and 16° in the robot-guided group. CONCLUSIONS: This study establishes a significant positive linear correlation between trajectory-skull angle and entry radial error, along with a distinctive U-shaped pattern in the relationship between trajectory-skull angle and target vector error. Our findings suggest that trajectory-skull angles of 9° (frame-based) and 16° (robot-guided) may optimize the accuracy of target vector error.


Subject(s)
Drug Resistant Epilepsy , Electroencephalography , Humans , Retrospective Studies , Electroencephalography/methods , Electrodes, Implanted , Stereotaxic Techniques , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Skull
15.
World Neurosurg ; 184: e494-e502, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38310948

ABSTRACT

BACKGROUND: The National Epilepsy Center (NEC) in Sri Lanka was established in 2017. Seizure outcome, effects on quality of life (QOL) and surgical complications among nonpediatric patients who underwent epilepsy surgery from October 2017 to February 2023 are described. METHODS: Nineteen patients (≥14 years) underwent epilepsy surgery at the NEC. We used Engel classification and Quality of Life in Epilepsy 31 (QOLIE-31) questionnaire to assess seizure outcome and QOL respectively. Surgical complications were categorized into neurological and complications related to surgery. RESULTS: Nine female and 10 male patients underwent surgery (mean age 27.5 years (range 14-44 years). The mean follow-up duration was 10.5 months (range 6-55 months). Twelve patients underwent temporal lobe resections. At 6-months follow-up, 83.3% (10/12) had favorable seizure outcomes with Engel class I/II. At 1-year follow-up 6/8 patients (75.0%) and at 2-year follow-up, 5/7 patients (71.4%) had a favorable outcome. Seven patients had extra-temporal lobe surgeries and one defaulted. Seizure freedom was observed in 6/6 at 6 months, 3/3 at 1-year, and 2/2 at 2-year follow-up. Five patients (26.3%) experienced minor post-operative surgical site infection. Two (11.1%) had persistent quadrantanopia. Meaningful improvement in QOL (change in QOLIE-31 score ≥11.8) was observed irrespective of seizure outcome or type of surgery (P < 0.001). CONCLUSIONS: Epilepsy surgery is effective in developing countries. Seizure outcomes in our patients are comparable to those worldwide. Clinically important QOL improvement was observed in our series. This is the first published data on epilepsy surgery outcomes in nonpediatric patients from Sri Lanka.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Humans , Male , Female , Adolescent , Young Adult , Adult , Quality of Life , Drug Resistant Epilepsy/surgery , Sri Lanka , Treatment Outcome , Epilepsy/surgery , Seizures/surgery , Retrospective Studies
16.
Clin Neurophysiol ; 160: 121-129, 2024 04.
Article in English | MEDLINE | ID: mdl-38422970

ABSTRACT

OBJECTIVE: To investigate the association between subclinical seizures detected on intracranial electroencephalographic (i-SCSs)recordings and mesial temporal sclerosis (MTS), as well as their impact on surgical outcomes of stereotactic laser amygdalohippocampotomy (SLAH). METHODS: A retrospective review was conducted on 27 patients with drug-resistant mesial temporal lobe epilepsy (MTLE) who underwent SLAH. The number of seizures detected on scalp EEG and iEEG was assessed. Patients were followed for a minimum of 3 years after SLAH. RESULTS: Of the 1715 seizures recorded from mesial temporal regions, 1640 were identified as i-SCSs. Patients with MTS were associated with favorable short- and long-term surgical outcomes. Patients with MTS had a higher number of i-SCSs compared to patients without MTS. The numbers of i-SCSs were higher in patients with Engel I-II outcomes, but no significant statistical difference was found. However, it was observed that patients with MTS who achieved Engel I-II classification had higher numbers of i-SCSs than patients without MTS (P < 0.05). CONCLUSION: Patients with MTS exhibited favorable short-term and long-term surgical outcome after SLAH. A higher number of i-SCSs was significantly associated with MTS in patients with MTLE. The number of i-SCSs tended to be higher in patients with Engel Ⅰ-Ⅱ surgical outcomes. SIGNIFICANCE: The association between i-SCSs, MTS, and surgical outcomes in MTLE patients undergoing SLAH has significant implications for understanding the underlying mechanisms and identifying potential therapeutic targets to enhance surgical outcomes.


Subject(s)
Drug Resistant Epilepsy , Epilepsies, Partial , Epilepsy, Temporal Lobe , Humans , Epilepsy, Temporal Lobe/diagnosis , Epilepsy, Temporal Lobe/surgery , Treatment Outcome , Seizures/surgery , Drug Resistant Epilepsy/surgery , Lasers
17.
Acta Neurochir (Wien) ; 166(1): 85, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38361129

ABSTRACT

BACKGROUND: Stereoelectroencephalography (SEEG) is an effective presurgical invasive evaluation for drug-resistant epilepsies. The introduction of robotic devices provides a simplified, accurate, and safe alternative to the conventional SEEG technique. We report our institutional experience with robot-assisted SEEG and compare its in vivo accuracy, operation efficiency, and safety with the more traditional SEEG workflow. METHODS: All patients with medically refractory focal epilepsy who underwent SEEG depth electrode implantation between 2014 and 2022 were included in this study. Technical advancements of the robot-assisted technique are described. Analyses of patient demographics, electrode implantation accuracy, operation time, and procedure-related complications were performed. RESULTS: One hundred and sixty-six patients underwent 167 SEEG procedures. The first 141 procedures were performed using a conventional approach involving a Leksell stereotactic system, and the last 26 procedures were robot-assisted. Among the 1726 depth electrodes that were inserted, the median entry point localization error was as follows: conventional (1.0 mm; range, 0.1-33.5 mm) and robot-assisted (1.1 mm; range, 0-4.8 mm) (P = 0.17). The median target point localization error was as follows: conventional (2.8 mm; range, 0.1-49 mm) and robot-assisted (1.8 mm; range, 0-30.3 mm) (P < 0.001). The median operation time was significantly reduced with the robot-assisted workflow (90 min vs. 77.5 min; P < 0.01). Total complication rates were as follows: conventional (17.7%) and robot-assisted (11.5%) (P = 0.57). Major complication rates were 3.5% and 7.7% (P = 0.77), respectively. CONCLUSIONS: SEEG is a safe and highly accurate method that provides essential guidance for epilepsy surgery. Implementing SEEG in conjunction with multimodal planning systems and robotic devices can further increase safety margin, surgical efficiency, and accuracy.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Robotics , Humans , Electroencephalography/methods , Electrodes, Implanted , Drug Resistant Epilepsy/diagnosis , Drug Resistant Epilepsy/surgery , Epilepsy/surgery , Stereotaxic Techniques
18.
Neurol Med Chir (Tokyo) ; 64(2): 71-86, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38220166

ABSTRACT

The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA®) device (Zimmer Biomet; Warsaw, IN, USA) for stereoelectroencephalography (SEEG) electrode implantation in patients with drug-resistant epilepsy. Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a literature search was carried out. Overall, 855 nonduplicate relevant articles were determined, and 15 of them were selected for analysis. The benefits of the ROSA® device use in terms of electrode placement accuracy, as well as operative time length, perioperative complications, and seizure outcomes, were evaluated. Studies that were included reported on a total of 11,257 SEEG electrode implantations. The limited number of comparative studies hindered the comprehensive evaluation of the electrode implantation accuracy. Compared with frame-based or navigation-assisted techniques, ROSA®-assisted SEEG electrode implantation provided significant benefits for reduction of both overall operative time (mean difference [MD], -63.45 min; 95% confidence interval [CI] from -88.73 to -38.17 min; P < 0.00001) and operative time per implanted electrode (MD, -8.79 min; 95% CI from -14.37 to -3.21 min; P = 0.002). No significant differences existed in perioperative complications and seizure outcomes after the application of the ROSA® device and other techniques for electrode implantation. To conclude, the available evidence shows that the ROSA® device is an effective and safe surgical tool for trajectory-guided SEEG electrode implantation in patients with drug-resistant epilepsy, offering benefits for saving operative time and neither increasing the risk of perioperative complications nor negatively impacting seizure outcomes.


Subject(s)
Drug Resistant Epilepsy , Robotic Surgical Procedures , Humans , Robotic Surgical Procedures/methods , Electroencephalography/methods , Stereotaxic Techniques , Drug Resistant Epilepsy/surgery , Seizures , Electrodes, Implanted , Retrospective Studies
19.
Childs Nerv Syst ; 40(5): 1507-1514, 2024 May.
Article in English | MEDLINE | ID: mdl-38273143

ABSTRACT

OBJECTIVE: The risk of hydrocephalus following hemispherectomy for drug resistant epilepsy (DRE) remains high. Patients with pre-existing hydrocephalus pose a postoperative challenge, as maintaining existing shunt patency is necessary but lacks a clearly defined strategy. This study examines the incidence and predictors of shunt failure in pediatric hemispherectomy patients with pre-existing ventricular shunts. METHODS: We performed a retrospective chart review at our center to identify pediatric patients diagnosed with DRE who were treated with ventricular shunt prior to their first hemispherectomy surgery. Demographic and perioperative data were obtained including shunt history, hydrocephalus etiology, epilepsy duration, surgical technique, and postoperative outcomes. Univariate analysis was performed using Fisher's exact test and Pearson correlation, with Bonferroni correction to a = 0.00625 and a = 0.01, respectively. RESULTS: Five of nineteen (26.3%) patients identified with ventriculoperitoneal shunting prior to hemispherectomy experienced postoperative shunt malfunction. All 5 of these patients underwent at least 1 shunt revision prior to hemispherectomy, with a significant association between pre- and post-hemispherectomy shunt revisions. There was no significant association between post-hemispherectomy shunt failure and valve type, intraoperative shunt alteration, postoperative external ventricular drain placement, hemispherectomy revision, lateralization of shunt relative to resection, postoperative complications, or postoperative aseptic meningitis. There was no significant correlation between number of post-hemispherectomy shunt revisions and age at shunt placement, age at hemispherectomy, epilepsy duration, or shunt duration prior to hemispherectomy. CONCLUSIONS: Earlier shunt revision surgery may portend a subsequent need for shunt revision following hemispherectomy. These findings may guide neurosurgeons in counseling patients with pre-existing ventricular shunts prior to hemispherectomy surgery.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Hemispherectomy , Hydrocephalus , Child , Humans , Hemispherectomy/adverse effects , Retrospective Studies , Hydrocephalus/surgery , Ventriculoperitoneal Shunt/adverse effects , Epilepsy/surgery , Drug Resistant Epilepsy/surgery , Reoperation , Postoperative Complications/etiology
20.
Sci Rep ; 14(1): 2349, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38287042

ABSTRACT

Epilepsy surgery is an option for people with focal onset drug-resistant (DR) seizures but a delayed or incorrect diagnosis of epileptogenic zone (EZ) location limits its efficacy. Seizure semiological manifestations and their chronological appearance contain valuable information on the putative EZ location but their interpretation relies on extensive experience. The aim of our work is to support the localization of EZ in DR patients automatically analyzing the semiological description of seizures contained in video-EEG reports. Our sample is composed of 536 descriptions of seizures extracted from Electronic Medical Records of 122 patients. We devised numerical representations of anamnestic records and seizures descriptions, exploiting Natural Language Processing (NLP) techniques, and used them to feed Machine Learning (ML) models. We performed three binary classification tasks: localizing the EZ in the right or left hemisphere, temporal or extra-temporal, and frontal or posterior regions. Our computational pipeline reached performances above 70% in all tasks. These results show that NLP-based numerical representation combined with ML-based classification models may help in localizing the origin of the seizures relying only on seizures-related semiological text data alone. Accurate early recognition of EZ could enable a more appropriate patient management and a faster access to epilepsy surgery to potential candidates.


Subject(s)
Drug Resistant Epilepsy , Epilepsies, Partial , Epilepsy , Humans , Natural Language Processing , Seizures , Drug Resistant Epilepsy/diagnosis , Drug Resistant Epilepsy/surgery , Electroencephalography , Epilepsies, Partial/diagnosis , Epilepsies, Partial/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...